RFC6921: Design Considerations for Faster-Than-Light (FTL) Communication

RFC6921: Design Considerations for Faster-Than-Light (FTL) Communication

Recent research in to fibers that reduce latency to near the speed of light in a vacuum are leading moves to plan for networks that transmit at speeds greater than 1c.

We are approaching the time when we will be able to communicate faster than the speed of light. It is well known that as we approach the speed of light, time slows down. Logically, it is reasonable to assume that as we go faster than the speed of light, time will reverse. The major consequence of this for Internet protocols is that packets will arrive before they are sent. This will have a major impact on the way we design Internet protocols. This paper outlines some of the issues and suggests some directions for additional analysis of these issues. – RFC6921 Abstract

John Dixon

John Dixon is the Principal Consultant of thirteen-ten nanometre networks Ltd, based in Wiltshire, United Kingdom. He has a wide range of experience, (including, but not limited to) operating, designing and optimizing systems and networks for customers from global to domestic in scale. He has worked with many international brands to implement both data centres and wide-area networks across a range of industries. He is currently supporting a major SD-WAN vendor on the implementation of an environment supporting a major global fast-food chain.

Comments are closed.